Mark Scheme - PI3 Chemical Kinetics

1	(a)	(i)	tangent drawn at t = 40 (1)		
			rate calculated 0.017 to 0.0	27 (ignore units) (1)	[2]
		(ii)	as reaction proceeds less c	ollisions (per unit time) occur	[1]
	(b)	(i)	1 st order shown by:		
			calculation of rates at at least 2 concentrations (1) statement rate α concentration (1)		
			OR		
			constant half-life (1)		
			half-life is 24 minutes (1)		[2]
		(ii)	rate = $k[N_2O_5]$ (1)		[1]
		(iii)	k = rate (from (i))/ [N ₂ O ₅] (from graph) (1) (mark correct numbers – no need to check evaluation)		
			units = minutes ⁻¹ (1)	ft from (ii)	[2]
		(iv)	(student A more likely to be rate determining step	correct) reaction is 1 st order and 1 [N ₂ 0	O ₅] involved in [1]
	(c)	correct curve starting at 100 kPa and becoming horizontal (1)			
		horizontal at 250 kPa (1)			[2]
					Total [11]

(b) (i)

	[NH ₄ +(aq)]/mol dm ⁻³	[NO ₂ -(aq)]/mol dm ⁻³	Initial rate/mol dm ⁻³ s ⁻¹
1	0.200	0.010	4.00 × 10 ⁻⁷
2	0.100	0.010	2.00 × 10 ⁻⁷
3	0.200	0.030	1.20 × 10 ⁻⁶
4	0.100	0.020	4.00 × 10 ⁻⁷

(1 mark for each correct answer)

[3]

(ii)
$$k = \underline{4.00 \times 10^{-7}} = 2.0 \times 10^{-4}$$
 (1) 0.200×0.010

Units =
$$mol^{-1} dm^3 s^{-1}$$
 (1)

(iv) Increases

If temperature is increased rate increases (1)

and since concentrations do not change the rate constant must increase (or similar) (1) [2]

Total [10]

[2] (a) Lead(II) iodide or Pbl₂ (1) Bright yellow (1) $2Cu^{2+} + 4l^{-} \rightarrow 2Cul + l_{2}(1)$ (b) The precipitate is copper(I) iodide (stated or clearly indicated by state symbols) (1) [2] (c) Bromine has a more positive E⁶ than iodine so it is a stronger oxidising agent (1) Bromine is able to oxidise iodide (1) Bromine has a less positive E[®] than chlorine so it is a weaker oxidising agent (1) Bromine is not able to oxidise chloride (1) MAX 3 OR Calculate EMF for each reaction (1 each) and state that positive EMF means reaction is feasible (1) [3] QWC Legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning [1] 1 mark for each two products or observations (d) KHSO₄ HI H₂S SO₂ S |₂ [MAX 2 for products] Yellow solid rotten egg smell steamy fumes Black solid or brown solution or purple fumes MAX 3 [3] (e) (i) Measure time taken for a sudden colour change (1) Rate = $1 \div \text{time}(1)$ [2] (ii) pH 1 has a concentration of H⁺ ten times higher than pH 2. [1] II. Order with respect to $H_2O_2 = 1$ (1) Order with respect to $I^- = 1$ (1) Order with respect to $H^+ = 0$ (1) [MAX 2 for the stated orders] Rate = $k[H_2O_2][I^-](1)$ [3] III. k = 0.028 (1) mol⁻¹dm³ s⁻¹ (1) [ecf from rate equation] [2] IV. Rate equation is unchanged and increasing temperature increases the value of the rate constant [1]

3

Total [20]

4 (a) 1 dm³ at 20°C contains 52.9 g and at 0°C it contains 17.5 g (1) :. amount crystallised = 52.9 - 17.5 = 35.4 g (1) [2] (b) (i) 2 mol of K₂S₂O₈ give 1 mol of O₂ 2 mol of $K_2S_2O_8$ give 29.0 dm³ of O_2 (1) \therefore 0.1 mol of $K_2S_2O_8$ gives $29.0/20 = 1.45 \text{ dm}^3$ of oxygen (1) [2] (ii) Measure the volume of oxygen produced at specified time intervals / Measure the pH of the solution at specified time intervals [1] (c) (i) An (inert) electrode that is used to carry the charge / current / electron flow [1] (ii) A comment on the relative values (e.g. the persulfate system is the more positive of the two systems) The more positive 'reagent' / persulfate ions acts as the oxidising agent, accepting electrons via the external circuit (1) - must have the first mark to get second [2] The experiments show that both the concentrations of iodide and persulfate (d) (i) have doubled (1) therefore the initial rate should increase four times $4 \times 8.64 \times 10^{-6} = 3.46 \times 10^{-5}$ (1) [2] Rate = $k[S_2O_8^2][\Gamma]$ (11) $\therefore k = \frac{8.64 \times 10^{-6}}{0.0400 \times 0.0100}$ $= 0.0216 (1) dm^3 mol^{-1} s^{-1}$ (1) [3] In the rate equation one $S_2O_8^{2-}$ ion reacts with one Γ ion. (111) The rate-determining step therefore has to have 1 mole of each reacting, as (only) seen in step 1 [1] Total [14]

(a)	Plotting (2)				
	Best fit line (1)			[3]	
(b)	(i)	C	(1)		
		Curve steeper	(1)	[2]	
	(ii)	Concentration of acid is greatest		[1]	
(c)	44 c	m ³ (±1 cm ³)		[1]	
(d)	Mole	es Mg = 0.101/24.3 = 0.00416	(1)		
	Mole	es HCI = 2 x 0.02 = 0.04	(1)	[2]	
(e)	(i)	Mg is not the limiting factor /			
		Mg now in excess / HCl not in exces	ss	[1]	
	(ii)	Moles acid = 0.5 x 0.04 = 0.02	(1)		
		Volume $H_2 = 0.01 \times 24 = 0.24 \text{ dm}^3$			
		- correct unit needed	(1)	[2]	
(f)	Low	er the temperature of the acid	(1)		
	Reactants collide with less energy (1)				
	Fewer molecules that have the required activation energy (1)[3]				
or	Use pieces of magnesium (1) less surface area (1) less chance of successful collisions (1)				
		ction of a form and style of writing appr plexity of subject matter.	opriate to pu	rpose [1]	

Total [16]

6	(a)		Use weighing scales to weigh the metal oxide (1) Use measuring cylinder to pour hydrogen peroxide solution and water into a conical flask (1) Immerse flask in water bath at 35 °C (1) Add oxide to flask and connect flask to gas syringe (1) Measure volume of oxygen every minute for 10 minutes /	
			at regular time intervals (1) (any 4 of above, credit possible from labelled diagram)	[4]
	(b)		Oxide A because reaction is faster	[1]
	(c)	(i)	18 cm ³	[1]
		(ii)	10 cm ³	[1]
	(d)		Concentration of hydrogen peroxide has decreased (1) reaction rate decreases / fewer successful collisions (1)	[2]
	(e)		All the hydrogen peroxide has decomposed / the same quantity of hydrogen peroxide was used	[1]
	(f)		25 cm ³	[1]
	(g)		Reaction will take less time (1) Reactants collide with more (kinetic) energy (1) More molecules have the required activation energy (1)	[3]
			QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter	[1]

Total [15]

- 7 (a) (i) He may have lost carbon dioxide through leaks, this would have given a lower volume than expected. (1)

 He used lower concentration of acid / diluted the acid with water and the rate of carbon dioxide evolution was slower than expected. (1)
 - (ii) The concentration of acid is higher in the first half (1) the collision rate is higher (1)[2]
 - (iii) eg k = $\frac{V}{T}$ (1) : k = $\frac{130}{298}$ / 0.436

$$\therefore V = 0.436 \times 323 = 141 \text{ (cm}^3\text{)}$$
 (1)

or
$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$
 (1) $\therefore V_1 = \frac{323 \times 130}{298} = 141 \text{ (cm}^3\text{)}$ (1) [2]

- (b) (i) 260 (cm³) [1]
 - (ii) 0.45 (g) (0.43–0.48) [1]
- (c) The diagram shows two reasonable distribution curves with T₂ flatter and 'more to the right' than T₁. (1)
 Activation energy correctly labelled, or mentioned in the writing (1)
 Fraction of molecules having the required activation energy is much greater at a higher temperature (thus increasing the frequency of successful collisions) (in words) (1)

The candidate has selected a form and style of writing that is appropriate to purpose and complexity of the subject matter QWC [1]

(d) Place the mixture on a balance and measure the (loss in) mass (1) at appropriate time intervals (1)

OR BY OTHER SUITABLE METHOD

eg. sample at intervals / quench (1) titration (1) [2]

Total [14]

- 8 (a) to increase rate of reaction / to increase surface area [1]
 - (b) MgCO₃ + 2HCl → MgCl₂ + CO₂ + H₂O (ignore state symbols) [1]
 - (c) rate starts fast and gradually slows (1)

because concentration becomes less so fewer collisions (per unit time) / less frequent collisions /lower probability of collisions (1)

- (d) all the solid would all have disappeared / if more carbonate is added further effervescence is seen [1]
- (e) (i) volume CO₂ = 200 cm³ (1)

(ii) mass MgCO₃ =
$$0.008333 \times 84.3 = 0.702 \text{ g}$$
 (1)
% MgCO₃ = $0.702 \times 100 = 79.0\% / 79\%$

(e) carbon dioxide is soluble in water / reacts with water (1)

atom economy = $40.3 / 84.3 \times 100 = 47.8\%$ (1)

0.889

- volume collected less therefore % / moles of MgCO₃ less (1) [2]
- (f) use of 40.3 and 84.3 (1)

[2]

[2]

Total [14]